Objective: Plasmonics enable truly nonphotonics components for communications, imaging and spectroscopy by exploiting localized and propagating surface plasmons that access nanometer-scale wavelengths at optical frequencies.

Impact: This MURI is creating (a) new plasmonic material designs (b) comprehensive design and experimental realization of subwavelength component active and passive devices and small, circuit-like networks (c) a toolbox of design methodologies for plasmonic networks and circuits.

Relevance: Deliverables will enable ultracompact, robust and highly efficient photonic components and networks for communications, imaging, and detection optimally suited for insertion into mobile military platforms.

Quantum Cascade Lasers with Plasmon Waveguide Cavities

Unprecedented wavelength coverage (mid-IR, far-IR) by changing active region thickness: from 3 μm to 150 μm

Laser polarization is normal to layers (TM mode): has enabled first surface plasmon laser, and allows innovative plasmonic resonator designs suited for chem/bio sensing applications.

Plasmon–Enhanced LED Light Emission

InGaN Quantum Wells:

- New light emission phenomenon in Si MOS transistor
- Quantum-confinement effect carrier injection into Si quantum dots: program electronics in inversion, program holes in accumulation
- Device fabricated in state-of-the-art Si CMOS foundry

Plasmon–Enhanced Detection in Long Wavelength Infrared Hyperspectral Arrays

- Mid-infrared photodetectors in 90–400 nm (2–20 μm) range
- Medical diagnostics, chemical imaging
- Night vision for battlefield recognition systems
- Chip-based detection of chemical warfare agents

Plasmon–Enhanced Detection

- Resonant cavity detector using in-plane geometry
- Metal contact serves dual purpose of optical waveguide and electrical read-out

Superlenses: Imaging Below the Diffraction Limit

Intersubband quantum dot detectors: promising technology to normal incidence excitation and lower dark currents. InAs quantum dots in a InGaAs well (SWELL) for mid-IR detection (Kithika et al. UNLV... but presently suffer from low quantum efficiency and responsivity due to small absorption volume.

Ultra–Small (~λ/10) Plasmon Waveguides Below Diffraction Limit

Force manipulation positioning of detectors: Topography: Fluorescence:

Schematic View:

Waveguide Excitation:

Dyes on waveguide excited over a waveguide distance = 1 μm
